Sub-nanometer atomic layer deposition for spintronics in magnetic tunnel junctions based on graphene spin-filtering membranes.

نویسندگان

  • Marie-Blandine Martin
  • Bruno Dlubak
  • Robert S Weatherup
  • Heejun Yang
  • Cyrile Deranlot
  • Karim Bouzehouane
  • Frédéric Petroff
  • Abdelmadjid Anane
  • Stephan Hofmann
  • John Robertson
  • Albert Fert
  • Pierre Seneor
چکیده

We report on the successful integration of low-cost, conformal, and versatile atomic layer deposited (ALD) dielectric in Ni–Al2O3–Co magnetic tunnel junctions (MTJs) where the Ni is coated with a spin-filtering graphene membrane. The ALD tunnel barriers, as thin as 0.6 nm, are grown layer-by-layer in a simple, low-vacuum, ozone-based process, which yields high-quality electron-transport barriers as revealed by tunneling characterization. Even under these relaxed conditions, including air exposure of the interfaces, a significant tunnel magnetoresistance is measured highlighting the robustness of the process. The spin-filtering effect of graphene is enhanced, leading to an almost fully inversed spin polarization for the Ni electrode of −42%. This unlocks the potential of ALD for spintronics with conformal, layer-by-layer control of tunnel barriers in magnetic tunnel junctions toward low-cost fabrication and down-scaling of tunnel resistances.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphene and Graphene Nanomesh Spintronics

Spintronics, which manipulate spins but not electron charge, are highly valued as energy and thermal dissipationless systems. A variety of materials are challenging the realization of spintronic devices. Among those, graphene, a carbon mono-atomic layer, is very promising for efficient spin manipulation and the creation of a full spectrum of beyond-CMOS spin-based nano-devices. In the present a...

متن کامل

Spin Polarized Current Phenomena in Magnetic Tunnel Junctions a Dissertation Submitted to the Department of Applied Physics and the Committee on Graduate Studies of Stanford University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Spin polarized current is of significant importance both scientifically and technologically. Recent advances in film growth and device fabrication in spintronics make possible an entirely new class of spin-based devices. An indispensable element in all these devices is the magnetic tunnel junction (MTJ) which has two ferromagnetic electrodes separated by an insulator barrier of atomic scale. Wh...

متن کامل

THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Spin Transport in Two-Dimensional Material Heterostructures

Spintronics is considered as an alternative for information processing beyond the charge based technology. The spintronic device performance depend on the spin relaxation mechanisms in the channel material. Si and graphene are interesting for their long spin coherence lengths and ideal for spin transport channels. Additionally, the interest in newly discovered two-dimensional semiconductors (2D...

متن کامل

Large current modulation and spin-dependent tunneling of vertical graphene/MoS2 heterostructures.

Vertical graphene heterostructures have been introduced as an alternative architecture for electronic devices by using quantum tunneling. Here, we present that the current on/off ratio of vertical graphene field-effect transistors is enhanced by using an armchair graphene nanoribbon as an electrode. Moreover, we report spin-dependent tunneling current of the graphene/MoS2 heterostructures. When...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 8 8  شماره 

صفحات  -

تاریخ انتشار 2014